1.3 Navigating continent-wide geospatial data

1.3.1 Using imperfect global data for local decisions

The quality of biodiversity information varies substantially between different sources.
Decisions that affect large geographical areas - like the whole of Africa — often rely on
information from global sources that provide a consistent overview across the whole area.

However, those decisions may be difficult to implement locally when they are inconsistent
with specific local contexts. How we handle the potential mismatch between global
datasets and local realities is critical for making effective evidence-based decisions.

Science-based policy assumes that management decisions
are based on the best available scientific evidence. It makes sense
then to assume that policy choices that affect all of Africa ought
to be guided by scientific information also covering the whole
continent. Unfortunately, there are significant trade-offs between
the broad geographical coverage of data, and how accurately
they represent any specific locality. National stakeholders will
simply refuse to use global datasets that fail to represent reality
based on their own experiences.

These feature maps supposedly all present the terrestrial
ecosystems of Mozambique. Even without presenting the map
legend (it is not feasible to show legends for all 162 vegetation
types in the most detailed map, for instance), it is obvious that
the three maps differ in material ways. The first map shows
the extents of ecoregions’, which derive from a global dataset
based on broad landforms and vegetation types. Ecoregions are
often used to assess ecological diversity at large spatial scales
(see Topic 2.2.2) because they use a consistent classification
scheme to cover the whole planet. By contrast, the second map
is based on continent-wide mapping of ecosystems based on
machine-learning classification of topographical and remotely
sensed land cover information?. This is more detailed than the
global ecoregion map, but lacks the detail of the third map, which
shows 162 Mozambican ecosystem types based on field surveys,
historical vegetation and soil maps, and expert assessments.

When it comes to policy decisions related to Mozambique, it
is obvious that the detailed map is most useful. However, policy
discussions considering larger areas - say, the whole of Southern
Africa - cannot rely on these detailed data, which may be
unavailable or inconsistent in neighbouring countries. This leaves
scientists with the tough decision on whether to use a patchwork
of inconsistent national datasets, or less accurate but consistent
global data. The latter approach is often preferred for practical
reasons (i.e. ease of reliable access, or the technical limitations
of harmonising disparate datasets), but not without limitations.

A major limitation of global data is that they are not validated
for every local context. For instance, global forest maps based
on earth observation technologies are remarkably accurate at
identifying trees. However, to a satellite sensor, trees in natural
forest appear similar to trees in artificial timber plantations. This
is not a failure of the dataset, which identified the trees correctly.
But it can contribute to major mistakes when policy decisions
are based on the incorrect assumption that all tree-covered
landscapes are beneficial for biodiversity. Blindly calculating
indicators based on these forest data (e.g. “Forest area as a
proportion of total land area”, a complimentary indicator of Goal
A of the Global Biodiversity Framework) would misrepresent the
situation on the ground.

Similarly, global datasets intended to identify ecological
degradation are at risk of misattributing the effects of natural climate
variation to degrading pressures. Many arid ecosystems throughout
Africa transition between barren and vegetated landscapes at the
onset of seasonal rainfall®. To satellite sensors, the reflectance of
bare ground in pristine arid landscapes is indistinguishable from
heavily degraded rangelands elsewhere. Again, in the absence of
local context with long seasonal time-series, global datasets can
grossly misrepresent the true state of biodiversity.

*.. Natural climate variation can change ecosystems in profound
ways that are not immediately obvious from remote sensing.

These repeat photos from the Nama Karoo, South Africa, show
the dramatic ecological differences at the same site during wet
(2011, top) and dry (2016, bottom) years. These grassy and bare
states have different reflectance according to satellite-based
sensors, so snapshot images risk misattributing natural seasonal
cycles to ecological degradation when sufficiently long time-
series data are unavailable.

Source: von Maltitz, G.P. et al. (2024) Coupled earth system and human processes: an
introduction to SPACES and the book. In von Maltitz, G.P et al. (eds): Sustainability of
Southern African ecosystems under Global Change. Springer. Cham, Switzerland. Image:
Graham von Maltitz et al. under Creative Commons License CC BY 4.0 DEED.

While important, the accuracy of global dataset is not the
only thing that matters. Globally derived information is only
useful when it aligns with local contexts and needs. Thus, the
characteristics of end-users are as important as the data
themselves. During the International Congress for Conservation
Biology in Kigali, Rwanda in July 2023, a group of researchers
from more than 20 international organisations identified
seven preconditions of useful biodiversity information®. These
preconditions are equally important and indivisible, so failing
to consider all of them limits the uptake of information for
evidence-based biodiversity reporting, policy and action. These
preconditions are useful for diagnosing why global datasets do
not lead to local actions and identifying interventions to improve
the uptake of evidence.

Awareness: Users Outreach: Improve marketing,
should know the data advertising, publicising, and
exist communication

Capacity: Users should  Training: Produce tutorials,
have the technical user manuals, demos, or

ability to use the data present training workshops
Infrastructure: Users Data optimisation and
should have sufficient investment: Package data

internet access and
computing power

more efficiently (for example,
for mobile access)

Enhance or share information
and communications
technology infrastructure"

Usability: Information Design and translation:

should be in an easy- Design data platforms to
to-use and accessible be more user-friendly and
format and language intuitive

Produce jargon-free
explanations in multiple

languages"
Legitimacy: Data Advocacy and diplomacy:
should be considered Advocate and negotiate such
authoritative that data are accepted by
national and international
authorities

Saliency: Data should Engagement and exchange:
be fit for purpose Interact with end-users to
better understand their needs

Credibility: Data should  Validation: Ensure scientific

be scientifically robust validity of data through

and representative independent verification and
peer review.

-*-. Seven preconditions of useful biodiversity information.

The usefulness of biodiversity information depends on the
interplay between demand-driven preconditions determined by
users (shades of red) and supply-side preconditions determined
by the data (shades of blue). A variety of interventions can
improve the uptake of biodiversity information in national policies
and programmes.

Source: Buschke, F.T. et al. (2023) Make global biodiversity information useful to national
decision-makers. Nature Ecology and Evolution, 7, 1953-1956.

Ultimately, global datasets are essential for continent-wide
scientific assessments, such as those presented throughout this
Atlas. While trade-offs are inevitable, the known limitations of
global information must be recognised and considered whenever
translating information into policy and action. The next four topics
in this chapter describe how spatial scale, geographical and
taxonomic biases, as well as methodological changes affect our
ability to map continent-scale biodiversity information accurately.

Timber plantations mapped as forest in global datasets.

Global datasets based on remote sensing identify habitat
features without necessarily considering the specific conservation
context. In South Africa, for example, global forest maps

identify tree-covered landscapes with great accuracy without
distinguishing that these trees are within artificial timber
plantations with little value for conservation.

Source: Bourgoin, C, et al. (2023): Global map of forest cover 2020 - version 1.

European Commission, Joint Research Centre (JRC) [Dataset] PID: http://data.europa.
eu/89h/10d1b337-b7d1-4938-a048-686c8185b290

400km

The ecosystems of Mozambique.

Different data sources intended to depict the same biological
features can differ significantly. The global map of ecoregions
shown here was derived from landforms and vegetation cover.
The continental map of ecosystems relied on a machine learning
algorithm, GIS, and remote sensing. The national ecosystem map
combined field data, historical vegetation and soil maps, and
expert assessments. National data is clearly more detailed, but
too often decisions are based on global datasets that tend to be
more easily accessible. (Note: the maps do not include legends
due to space constraints).

Sources: In individual captions.
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1.3.2 Source of uncertainty: the spatial scale of biodiversity assessment

Most protected areas have lists of common species. Yet
anyone who has visited one knows the frustration of not sighting
rare species from these lists. This is not because the lists are
necessarily wrong, but because monitoring biodiversity is
fundamentally scale-dependent. Just because a species occurs
inside a protected area, does not mean that it also occurs in the
area immediately surrounding the game-viewing vehicle. Scale-
dependency also affects how species are monitored for the whole
of Africa. Something as foundational as mapping a single species’
geographical distribution is far from straightforward.

When researchers record a species during field surveys, they
mark coordinates of their sightings and upload these to international
databases, such as the Global Biodiversity Information Facility
(GBIF)*. Alongside field records from researchers, GBIF also includes
historical records from museum specimens and modern sightings
recorded by the public as part of citizen science programmes.
While occurrence records are the most reliable information about
where species do occur (i.e. their true presence), they are very likely
to underestimate occurrences in areas that are rarely visited and
poorly studied (i.e. their false absence).

A well-studied species like the Chacma baboon (Papio ursinus)
has many occurrence records throughout southern Africa. These
unmistakable and charismatic primates occur in many different
habitats around cities, farmlands, mountains, and deserts. But
other less obvious species might not be recorded with as much
regularity or accuracy.

The simplest way to extrapolate a species geographic range
into understudied regions is to draw a shape around the outermost
occurrence records. These types of ranges are known as Extents
of Occurrence, and are commonly used in field guides to show
where species are likely to occur. In the process of developing
the IUCN Red List, experts delineated and refined the Extents of
Occurrence for practically all vertebrate species worldwide?“. In
contrast to point records, Extents of Occurrence are susceptible to
overestimating species ranges because they include large areas
where species might not actually occur (i.e. false presences). For
well-studied baboons, experts knew to cut out a portion of their
range in the Kalahari Desert, where the species was known to be
absent. For lesser known species, however, such exclusions may
be overlooked.

Several different modelling techniques aim to fill the gap
between fine-scale occurrence records and coarse Extents of
Occurrence maps. These techniques rely on statistical models
to find relationships between known occurrence records and a
suite of predictors, like climate, elevation, or land cover. A widely
used method is Maxent®, a machine-learning approach that uses
entropy maximisation to predict species distributions. Methods
like these are very powerful, but they have a steep learning curve
to understand all the possible analytical choices and validate
model outputs. The species distribution model for the baboon is
sophisticated enough to predict that this adaptable species can
occur in habitats as vastly different as dry Namibian deserts or
cold mountains in Lesotho.

Mapping the range of a single species is tricky enough, but
when researchers need to aggregate the distributions of multiple
species at the same time, they rely on sampling grids. Range
maps of different species are stacked so the number of species
occurring together within the sampling grid cell give an indication
of the biodiversity of that area.

The choice of grid size can have a huge effect on biodiversity
estimates. For example, counting the number of hexagonal grid
cells that contain occurrence records for the baboon will differ
a lot depending on the size of the grid. When grid cells are only
50km across, most cells will contain zero occurrences while a
few cells might have one or two records. However, when grid
cells are 250km across, a single cell can easily encompass
multiple records. Summing the area of the grid cells containing
occurrence records quantifies the geographic range as the ‘Area
of Occupancy’.

For the baboon, we can see that the estimates of its geographic
range size as the Area of Occupancy varies considerably for each
combination of range map and scale of assessment. Range size
estimates based on point records in 50km grid cells are 20 times
smaller than ranges estimated from the Extent of Occurrence in a
250km grid. Yet both approaches can be justified under the right
circumstances.

Ultimately, the onus in on users to understand and interpret
whether the source of distribution data and the scale of
assessment are appropriate for their specific purposes. This holds
true for single protected areas, countries, regions, and the whole
continent of Africa.

Mapping species’ distribution ranges for the whole of Africa is not a simple task. Results
vary significantly depending on how, and at which spatial scale, species’ ranges are defined.
Biodiversity maps are simplified depictions of complex realities, shaped by scientific views.

To best interpret them, it is key for the users to understand the trade-offs between different
mapping technics depending on e.g. symbolism. It is as important for the scientists to report
mapping choices and the limits of their data in order to best support decision making.

Types of distribution
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Chacma baboon.

The Chacma baboon is very adaptable to life

in many different habitats, from the deserts of
Namibia, to the mountains of Lesotho. This makes it
challenging to map its distribution range accurately.
Source: Bernard DUPONT on Wikimedia Commons CC BY-SA 2.0.

50km hexagonal grid:

‘.. The Area of Occupancy at three different spatial scales.
The geographic range for the baboon (Papio ursinus) expressed

as the Area of Occupancy, by counting grid cells (50km, 100km,

250km across) that contain occurrence records.

Source: GBIF.org (2023), Global Biodiversity Information Facility (GBIF) Homepage.
Available from: https://www.gbif.org [17 November 2023].

Occurrence Records (GBIF) [ Species distribution model [l Extent of Occurrence (IUCN Red List)

Medium (100km) Coarse (250km)

Scale of assessment

-*-. Different, yet equally valid, estimates of the baboon's Area
of Occupancy.

The geographic range for the Chacma baboon (Papio ursinus)
expressed as the Area of Occupancy, for each combination of
distribution type (Extent of Occurrence, species distribution
model, and occurrence records) and scale of assessment (a grid
with cells measuring 50km, 100km, 250km across).

Source: Own calculations.

Map 1: Extent of Occurrence (Expert delineations for the IUCN Red List)

Environmental suitability

Map 3: Occurrence Records (GBIF)

Three technically valid depictions of the baboon's
geographical distribution.

The geographic range for the baboon (Papio ursinus) displayed
as its Extent of Occurrence (from the IUCN Red List), a species
distribution model (climate-based suitability modelled using
Maxent), and occurrence records (based on points from the
Global Biodiversity Information Facility, GBIF).

sources:

Map 1: Sithaldeen, R. (2019) Papio ursinus (errata version published in 2020). The IUCN
Red List of Threatened Species 2019: e. T16022A168568698. https://dx.doi.org/10.2305/
JUCN.UK 2019-3 RLTS.T16022A168568698 en

Map 2: Own modelling.

Map 3: GBIF.org (2023) Global Biodiversity Information Facility (GBIF) Homepage. Available
from: https://www.gbif.org [17 November 2023].

Map 2: Species distribution model (Climatic suitability based on Maxent modelling)
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1.3.3 Geographic biases in biodiversity data

Although scientists currently know more about the distributions
of plants and animals than at any other point in human history,
large parts of Africa are essentially still unexplored. Reasons
for this vary. Some countries have too few ecologists to cover
large territories. In other countries, untraversable terrain, conflict
zones, or poor road access prevent researchers from conducting
biodiversity surveys. The outcome of these geographical biases
is that it is sometimes hard to know whether an area has few
species living there, or whether it is simply understudied.

This feature map shows all the occurrence records in the Global
Biodiversity Information Facility’s (GBIF) database’. Only a few
countries — notably Benin, South Africa, and Kenya — are relative
well covered by survey records. Most of the Sahel, Democratic
Republic of the Congo, and Angola are data poor, despite these
regions having some of the most unique biodiversity on the
planet. Africa’s biodiversity hotspots are amongst the most
poorly studied worldwide, with only a tiny fraction of their total
biodiversity represented in global databases?.

Benin is unique in that its whole territory is covered by
systematic surveys, such as the Census of National Forest of
Benin®. But within most other countries, data are not spread evenly.
In countries like Namibia, Botswana, and Ethiopia, occurrence
records are clearly concentrated around urban centres, protected
areas, and road networks. In such instances, the availability of
data says more about the accessibility to researchers than the
distributions of species.

How the Kunming-Montreal Global Biodiversity

Framework considers data biases.

Target 21 of the Global Biodiversity Framework aims to:

“Ensure that the best available data, information and knowledge are
accessible to decision-makers, practitioners and the public to guide
effective and equitable governance, integrated and participatory
management of biodiversity, and to strengthen communication,
awareness-raising, education, monitoring, research and knowledge
management...”

The indicator to monitor progress towards this targets is still under
development, but it is proposed to be a composite indicator that includes
the geographic coverage of accessible biodiversity data for all species”.
In simple terms, success requires that geographically representative data
is available across whole species’ ranges.

Scientists currently know more about the distributions of plants and
animals than ever before, but information still tends to come from only a
small subset of the whole planet. Data are predominantly from a few well-

studied countries, while large parts of Africa are still unexplored. When
analysing spatial biodiversity data, it is important to distinguish areas that
truly have low biodiversity from areas that are simply understudied.

There are also geographical data biases within individual
protected areas. This inset map shows how occurrence records
in a small part of Kruger National Park, South Africa, are
concentrated around campsites, roads, and lookout points. Like
in many protected areas on the continent, researchers and
tourists to Kruger National Park may not leave their vehicles
unless accompanied by armed rangers. This means that most
sightings only occur in very specific areas; not because species
prefer these areas, but because they are more accessible to
scientists. In many protected areas, wildlife census counts are
carried out from vehicles or fixed survey points and researchers
must use sophisticated statistical techniques (e.g. distance-based
sampling) to extrapolate their counts to areas not covered by
their surveys.

Geographically representative data is essential for effective
conservation and is prioritised by the Kunming-Montreal Global
Biodiversity Framework (see Box). However, recent estimates
suggest that at current rates of progress, it might take another
two centuries before scientists have covered the whole continent
at least once®. Unfortunately, just one visit might not be enough
because it is unlikely that all species will be recorded during
a single survey. Latest estimates suggest that more than 10
surveys will be needed to record half of all know species in an
area”.

Complete geographically representative biodiversity data will
not be available for the foreseeable future. Therefore, the onus
is on scientists, managers, and policymakers to acknowledge and
accommodate imperfect information on species’ distributions. In
practice, this means confirming whether a high density of data
in an area is due to there being high biodiversity there or merely
because the area is easily accessible to researchers. It also
means that the absence of data should be treated cautiously
because, more often than not, it tells us more about important
gaps in our knowledge than it does about the unsuitability of an
area to plants and animals.

Letaba Rest Camp, Kruger National Park, South Africa.

The density of occurrence records from the Global Biodiversity
Information Facility (GBIF) around Letaba Rest Camp in Kruger
National Park, South Africa.

Source: GBIF.org (2023) Global Biodiversity Information Facility (GBIF) Homepage. Available
from: https://www.gbif.org [05 December 2023].

Letaba Rest Camp, Kruger National Park, South Africa.

The Letaba Rest Camp in Kruger National Park has a
viewing deck overlooking the Letaba River. Tourists can
sip sundowners while watching animals on the wide-
open sandbank. The ease of viewing means that there is
a disproportionately high number of occurrence records
at the campsite.

Source: Falko Buschke, with permission, all rights reserved.

Spotting species along the road network.

This lioness preferred resting on the warm road, rather than the
dew-covered vegetation. Occurrence records are often concentrated
along roadways because researchers and tourists are often not
allowed to leave their vehicles and animals are much more visible
on open routes compared to the dense roadside vegetation.

=" Source: Falko Buschke, with permission, all rights reserved.

Sightings at dedicated viewpoints.

This herd of elephants could be spotted easily from the bridge
over the Letaba River, Kruger National Park, South Africa.
Dedicated lookout points - like bridges, bird hides, or piers —
tend to have a high concentration of occurrence records.

Source: Falko Buschke, with permission, all rights reserved.

The density of occurrence records in the
Global Biodiversity Information Facility (GBIF).

high

low

The density of occurrence records in the Global Biodiversity
Information Facility (GBIF).

Source: GBIF.org (2023), Global Biodiversity Information Facility (GBIF) Homepage.
Available from: https://www.gbif.org [05 December 2023].
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1.3.4 Taxonomic bias issues

Biodiversity refers to the diversity of life on Earth at multiple
levels, including genetic, species, and ecosystem diversity, as
well as the ecological functions, interactions, and evolutionary
processes that sustain them. But most of scientific evidence is
from just a few well-studied taxonomic groups, with thousands of
species yet to be discovered. For decades, charismatic vertebrate
species received much more research focus than invertebrates
and plants, even though the latter groups make up a much larger
proportion of known biodiversity.

The map on the left shows the densities of nearly 650000
known records from 1346 beetle species in Africa represented in
the Global Biodiversity Information Facility’. By contrast, the map
on the right shown the densities of more than 48 million known
records from 1439 bird species from the same database. Even
though there are an estimated 90- 180 beetle species for every
one bird species globally?, there are 70 times fewer data records
for this group of organisms.

Biodiversity research has historically focused more on certain
taxonomic groups, particularly on large charismatic vertebrates,
and less on plants and invertebrates, resulting in uneven data
availability across the tree of life. This disparity influence

the way biodiversity is represented (or is partly missing for
less-studied taxa) in maps and models. When interpreting
geographic patterns of biodiversity, it is essential to check
wether they fully or only partially represent all life on earth.
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Taxonomic group

This type of taxonomic bias is not unique to the Global
Biodiversity Information Facility. For instance, the International
Union for Conservation of Nature’s (IUCN) Red List shows similar
biases. Currently, the extinction threats of roughly the same
amount of plant (~63000) and vertebrate (~60000) species
have already assessed by the IUCN. However, there are about six
plant species for every one vertebrate species, which equates to
only 15% of all known plants with extinction threat assessments
compared to 81 9% of vertebrates. The numbers look even worse
for invertebrates (29%) and fungi & protists (0.5%), which are
practically invisible in global threat assessments.

Density of records in the Global
Biodiversity Information Facility (GBIF)

High

Low

*.. The density of records for beetles in the
Global Biodiversity Information Facility (GBIF).
Source: GBIF.org (2024), Global Biodiversity Information Facility (GBIF)
Homepage. Available from: https://www.gbif.org [18 January 2024].

Density of records in the Global
Biodiversity Information Facility (GBIF)

High

Low

The density of records for birds in the
Global Biodiversity Information Facility (GBIF).

Source: GBIF.org (2024), Global Biodiversity Information Facility (GBIF)
Homepage. Available from: https://www.gbif.org [18 January 2024].

African dung beetles, one of more than a
million known beetle species on the planet.

Dung beetles (Scarabaeus spp.) perform the
essential role of processing animal waste

and ensuring nutrient cycling and ecosystem
functioning. Despite this thankless task, these
beetles and others like them are mostly
underrepresented in global biodiversity databases.
Source: Jochen Smolka on flickr CC BY-NC-SA 2.0.

The common ostrich, an endemic African bird.

Birds, like this ostrich (Struthio camelus), are well represented in
global biodiversity databases despite only making up a relatively
small proportion of all known species.

Source: Axel Tschentscher on Wikimedia Commons CC BY-SA 4.0 DEED.

Taxonomic biases can have major implications for policy. The
use of wild plants and fungi for food, fibre, fuel, and medicine
has shaped African societies over centuries. Similarly, some
invertebrates have supported agriculture though pollination
and pest control, while others have destroyed crops (e.g. locust
swarms) and spread diseases (e.g. malaria vectors). Despite the
social and cultural significance of these organisms, they tend to
be overlooked in global biodiversity databases.

In practice, scientific knowledge covers only a small fraction of all
species. Most biodiversity is still unknown. As a result, interpretations
of maps that depict biodiversity need to take into account the
limitations of the underlying data. In most cases, these maps might

accurately show the distributions of birds and mammals, but

they fall short of representing the grasses, trees, shrubs,
mushrooms, insects, spiders, and snails that make up
most of life on earth.
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1.3.5 Methodological updates to underlying data

Measuring biodiversity for the whole continent is challenging,
so scientists often use sophisticated models to predict biodiversity.
These models rely on algorithms that process incomplete information
from field surveys or satellite sensors, resulting in consistent and
comparable predictions across large areas. However, improving and
updating these algorithms can change their predictions dramatically,
even when the actual biodiversity features stay the same. It is
important to understand when the dynamics of a dataset are
caused by real changes to biodiversity, and when they are simply the
outcome of changes to the underlying model.

2015

Biodiversity Intactness index (BIl)

B

The Biodiversity Intactness Index is a perfect example of how
biodiversity predictions can change due to improvements to the
modelling approach. The Biodiversity Intactness Index is a measure
of an area’s species richness or average population abundance,
presented as the proportion of what would be expected in an
equivalent intact ecosystem’. So, an Index value of 0.5 means that
the current biodiversity is half of what it was before any human
interference. This is useful because it means that biodiversity can
theoretically be compared across vastly different ecosystem types.

Sometimes we observe significant changes in biodiversity
through time, but we should be careful of reading too much
into these changes. The technical difficulty of measuring
biodiversity for the whole continent means that scientists
rely on predictive models. When these models are improved
and updated, their predictions can change dramatically even
when the underlying biodiversity features stay the same.

Springbok, Namib Desert, Namibia.

because of human-driven biodiversity loss.
Source: Grégoire Dubois, with permission, all rights reserved.

Even though the idea of the Biodiversity Intactness Index dates
back to 2005, models for the whole globe only appeared a decade
later**. These global estimates were based on a generalised linear
mixed effect regression model, a statistical technique that finds
patterns in comparable biodiversity surveys across multiple sites
that differ in the nature or intensity of human impacts®. It then uses
these patterns to predict biodiversity in unsurveyed sites based on
land-cover. As with all statistical techniques, the predictions are only
as good as the quality of the data used to train the model.

*«.  Source: Newbold, T. et al. (2015) Global
effects of land use on local terrestrial
biodiversity. Nature 520, 45-50.

The original model of the Biodiversity Intactness Index underestimated biodiversity in arid
rangelands with low human population densities, like the Namib Desert in Namibia. But
such areas might have naturally low biodiversity due to their hot and dry climates, not

Source: TREEAID on flickr CC BY 2.0.

Biodiversity Intactness index (BII)

B

Source: Sanchez Ortiz, K., et al. (2019) Global maps
of Biodiversity Intactness Index [Data set]. Natural
History Museum. https://doi.org/10.5519/0000082

Scientists soon noticed how certain patterns in the global
Biodiversity Intactness Index did not align with what they knew
from other studies®. These errors were attributed to a combination
of incomplete survey data and coarse land-cover data®, which were
improved in subsequent years. Upgrades to the quality of land-
cover were especially useful for distinguishing between artificial
pasturelands and natural rangelands®, and for comparing plantations
with lightly and intensely managed secondary forests’. The updated
version of the Biodiversity Intactness Index provides a more reliable
prediction of the state of biodiversity worldwide.

The key lesson from the Biodiversity Intactness Index is how
important it is to understand what is being presented by any dataset.
It would be tempting — not to mention technically straightforward
- to compare the Biodiversity Intactness Index between 2015 and
2019 and draw conclusions about biodiversity dynamics during that
period. But this would be a major mistake. Therefore, scientists have a
duty to guide policy officials to understand when data represent real
changes in biodiversity and when they only represent improvements
in data collection, monitoring, and modelling.

Edges of the Sahara desert.

The updated Biodiversity Intactness Index now shows a clearer picture of
areas of known ecological degradation, like the Sahel in Mali. The early
model overestimated intactness in rangelands with intermediate human
population pressure, but this has been fixed in the updated version.

Deforestation in Cameroon.
The original model for the Biodiversity Intactness Index predicted,

perhaps counterintuitively, that biodiversity is higher in primary forests
with more intense human use. The updated model does a better job of
presenting biodiversity loss in heavily used forests, like these cleared

forests in Cameroon.
Source: Baudouin Desclee, with permission, all rights reserved.
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