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Awareness: Users 
should know the data 
exist

Outreach: Improve marketing, 
advertising, publicising, and 
communication

Capacity: Users should 
have the technical 
ability to use the data

Training: Produce tutorials, 
user manuals, demos, or 
present training workshops

Infrastructure: Users 
should have sufficient 
internet access and 
computing power

Data optimisation and 
investment: Package data 
more efficiently (for example, 
for mobile access)
Enhance or share information 
and communications 
technology infrastructure"

Usability: Information 
should be in an easy-
to-use and accessible 
format and language

Design and translation: 
Design data platforms to 
be more user-friendly and 
intuitive
Produce jargon-free 
explanations in multiple 
languages"

Legitimacy: Data 
should be considered 
authoritative

Advocacy and diplomacy: 
Advocate and negotiate such 
that data are accepted by 
national and international 
authorities

Saliency: Data should 
be fit for purpose

Engagement and exchange: 
Interact with end-users to 
better understand their needs

Credibility: Data should 
be scientifically robust 
and representative

Validation: Ensure scientific 
validity of data through 
independent verification and 
peer review.
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1.3 Navigating continent-wide geospatial data

1.3.1 Using imperfect global data for local decisions

Science-based policy assumes that management decisions 
are based on the best available scientific evidence. It makes sense 
then to assume that policy choices that affect all of Africa ought 
to be guided by scientific information also covering the whole 
continent. Unfortunately, there are significant trade-offs between 
the broad geographical coverage of data, and how accurately 
they represent any specific locality. National stakeholders will 
simply refuse to use global datasets that fail to represent reality 
based on their own experiences.

These feature maps supposedly all present the terrestrial 
ecosystems of Mozambique. Even without presenting the map 
legend (it is not feasible to show legends for all 162 vegetation 
types in the most detailed map, for instance), it is obvious that 
the three maps differ in material ways. The first map shows 
the extents of ecoregions1, which derive from a global dataset 
based on broad landforms and vegetation types. Ecoregions are 
often used to assess ecological diversity at large spatial scales 
(see Topic 2.2.2) because they use a consistent classification 
scheme to cover the whole planet. By contrast, the second map 
is based on continent-wide mapping of ecosystems based on 
machine-learning classification of topographical and remotely 
sensed land cover information2. This is more detailed than the 
global ecoregion map, but lacks the detail of the third map, which 
shows 162 Mozambican ecosystem types based on field surveys, 
historical vegetation and soil maps, and expert assessments3. 

When it comes to policy decisions related to Mozambique, it 
is obvious that the detailed map is most useful. However, policy 
discussions considering larger areas – say, the whole of Southern 
Africa – cannot rely on these detailed data, which may be 
unavailable or inconsistent in neighbouring countries. This leaves 
scientists with the tough decision on whether to use a patchwork 
of inconsistent national datasets, or less accurate but consistent 
global data. The latter approach is often preferred for practical 
reasons (i.e. ease of reliable access, or the technical limitations 
of harmonising disparate datasets), but not without limitations.

A major limitation of global data is that they are not validated 
for every local context. For instance, global forest maps based 
on earth observation technologies are remarkably accurate at 
identifying trees. However, to a satellite sensor, trees in natural 
forest appear similar to trees in artificial timber plantations. This 
is not a failure of the dataset, which identified the trees correctly. 
But it can contribute to major mistakes when policy decisions 
are based on the incorrect assumption that all tree-covered 
landscapes are beneficial for biodiversity. Blindly calculating 
indicators based on these forest data (e.g. “Forest area as a 
proportion of total land area”, a complimentary indicator of Goal 
A of the Global Biodiversity Framework) would misrepresent the 
situation on the ground.

Similarly, global datasets intended to identify ecological 
degradation are at risk of misattributing the effects of natural climate 
variation to degrading pressures. Many arid ecosystems throughout 
Africa transition between barren and vegetated landscapes at the 
onset of seasonal rainfall4. To satellite sensors, the reflectance of 
bare ground in pristine arid landscapes is indistinguishable from 
heavily degraded rangelands elsewhere. Again, in the absence of 
local context with long seasonal time-series, global datasets can 
grossly misrepresent the true state of biodiversity.

While important, the accuracy of global dataset is not the 
only thing that matters. Globally derived information is only 
useful when it aligns with local contexts and needs. Thus, the 
characteristics of end-users are as important as the data 
themselves. During the International Congress for Conservation 
Biology in Kigali, Rwanda in July 2023, a group of researchers 
from more than 20 international organisations identified 
seven preconditions of useful biodiversity information5. These 
preconditions are equally important and indivisible, so failing 
to consider all of them limits the uptake of information for 
evidence-based biodiversity reporting, policy and action. These 
preconditions are useful for diagnosing why global datasets do 
not lead to local actions and identifying interventions to improve 
the uptake of evidence.

Ultimately, global datasets are essential for continent-wide 
scientific assessments, such as those presented throughout this 
Atlas. While trade-offs are inevitable, the known limitations of 
global information must be recognised and considered whenever 
translating information into policy and action. The next four topics 
in this chapter describe how spatial scale, geographical and 
taxonomic biases, as well as methodological changes affect our 
ability to map continent-scale biodiversity information accurately. 

The quality of biodiversity information varies substantially between different sources. 
Decisions that affect large geographical areas – like the whole of Africa – often rely on 
information from global sources that provide a consistent overview across the whole area. 
However, those decisions may be difficult to implement locally when they are inconsistent 
with specific local contexts. How we handle the potential mismatch between global 
datasets and local realities is critical for making effective evidence-based decisions.
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The ecosystems of Mozambique. 
Different data sources intended to depict the same biological 
features can differ significantly. The global map of ecoregions 
shown here was derived from landforms and vegetation cover. 
The continental map of ecosystems relied on a machine learning 
algorithm, GIS, and remote sensing. The national ecosystem map 
combined field data, historical vegetation and soil maps, and 
expert assessments. National data is clearly more detailed, but 
too often decisions are based on global datasets that tend to be 
more easily accessible. (Note: the maps do not include legends 
due to space constraints).
Sources: In individual captions.

Timber plantations mapped as forest in global datasets. 
Global datasets based on remote sensing identify habitat 
features without necessarily considering the specific conservation 
context. In South Africa, for example, global forest maps 
identify tree-covered landscapes with great accuracy without 
distinguishing that these trees are within artificial timber 
plantations with little value for conservation.
Source: Bourgoin, C., et al. (2023): Global map of forest cover 2020 - version 1. 
European Commission, Joint Research Centre (JRC) [Dataset] PID: http://data.europa.
eu/89h/10d1b337-b7d1-4938-a048-686c8185b290

Map of ecoregions (global source). 
Source: Olson, D.M., et al. (2001). Terrestrial 
ecoregions of the world: a new map of life on earth. 
BioScience, 51, 933–938.

Map of ecosystems (continental source). 
Source: Sayre, R. (2023) Africa Terrestrial Ecosystems: U.S. Geological 
Survey data release, https://doi.org/10.5066/ P9BHBKA2

Map of ecosystems (national source). 
Source: Lötter, M., et al. (2023) Historical vegetation map 
and Red List of ecosystems assessment for Mozambique – 
Version 2.0 – Final report. USAID / SPEED+, AFD/FFEM. Maputo, 
Mozambique.

Natural climate variation can change ecosystems in profound 
ways that are not immediately obvious from remote sensing. 
These repeat photos from the Nama Karoo, South Africa, show 
the dramatic ecological differences at the same site during wet 
(2011, top) and dry (2016, bottom) years. These grassy and bare 
states have different reflectance according to satellite-based 
sensors, so snapshot images risk misattributing natural seasonal 
cycles to ecological degradation when sufficiently long time-
series data are unavailable.
Source: von Maltitz, G.P. et al. (2024) Coupled earth system and human processes: an 
introduction to SPACES and the book. In von Maltitz, G.P et al. (eds): Sustainability of 
Southern African ecosystems under Global Change. Springer. Cham, Switzerland. Image: 
Graham von Maltitz et al. under Creative Commons License CC BY 4.0 DEED.

Seven preconditions of useful biodiversity information. 
The usefulness of biodiversity information depends on the 
interplay between demand-driven preconditions determined by 
users (shades of red) and supply-side preconditions determined 
by the data (shades of blue). A variety of interventions can 
improve the uptake of biodiversity information in national policies 
and programmes.
Source: Buschke, F.T. et al. (2023) Make global biodiversity information useful to national 
decision-makers. Nature Ecology and Evolution, 7, 1953-1956.
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1.3.2 Source of uncertainty: the spatial scale of biodiversity assessment

Map 1: Extent of Occurrence (Expert delineations for the IUCN Red List)
50 km hexagonal grid:

100 km hexagonal grid:

250 km hexagonal grid:

Map 3: Occurrence Records (GBIF)

Map 2: Species distribution model (Climatic suitability based on Maxent modelling)

Most protected areas have lists of common species. Yet 
anyone who has visited one knows the frustration of not sighting 
rare species from these lists. This is not because the lists are 
necessarily wrong, but because monitoring biodiversity is 
fundamentally scale-dependent. Just because a species occurs 
inside a protected area, does not mean that it also occurs in the 
area immediately surrounding the game-viewing vehicle. Scale-
dependency also affects how species are monitored for the whole 
of Africa. Something as foundational as mapping a single species’ 
geographical distribution is far from straightforward. 

When researchers record a species during field surveys, they 
mark coordinates of their sightings and upload these to international 
databases, such as the Global Biodiversity Information Facility 
(GBIF)1. Alongside field records from researchers, GBIF also includes 
historical records from museum specimens and modern sightings 
recorded by the public as part of citizen science programmes. 
While occurrence records are the most reliable information about 
where species do occur (i.e. their true presence), they are very likely 
to underestimate occurrences in areas that are rarely visited and 
poorly studied (i.e. their false absence).

A well-studied species like the Chacma baboon (Papio ursinus) 
has many occurrence records throughout southern Africa. These 
unmistakable and charismatic primates occur in many different 
habitats around cities, farmlands, mountains, and deserts. But 
other less obvious species might not be recorded with as much 
regularity or accuracy.

The simplest way to extrapolate a species geographic range 
into understudied regions is to draw a shape around the outermost 
occurrence records. These types of ranges are known as Extents 
of Occurrence, and are commonly used in field guides to show 
where species are likely to occur. In the process of developing 
the IUCN Red List, experts delineated and refined the Extents of 
Occurrence for practically all vertebrate species worldwide2 – 4. In 
contrast to point records, Extents of Occurrence are susceptible to 
overestimating species ranges because they include large areas 
where species might not actually occur (i.e. false presences). For 
well-studied baboons, experts knew to cut out a portion of their 
range in the Kalahari Desert, where the species was known to be 
absent. For lesser known species, however, such exclusions may 
be overlooked.

Several different modelling techniques aim to fill the gap 
between fine-scale occurrence records and coarse Extents of 
Occurrence maps. These techniques rely on statistical models 
to find relationships between known occurrence records and a 
suite of predictors, like climate, elevation, or land cover. A widely 
used method is Maxent5, a machine-learning approach that uses 
entropy maximisation to predict species distributions. Methods 
like these are very powerful, but they have a steep learning curve 
to understand all the possible analytical choices and validate 
model outputs. The species distribution model for the baboon is 
sophisticated enough to predict that this adaptable species can 
occur in habitats as vastly different as dry Namibian deserts or 
cold mountains in Lesotho.

Mapping the range of a single species is tricky enough, but 
when researchers need to aggregate the distributions of multiple 
species at the same time, they rely on sampling grids. Range 
maps of different species are stacked so the number of species 
occurring together within the sampling grid cell give an indication 
of the biodiversity of that area. 

The choice of grid size can have a huge effect on biodiversity 
estimates. For example, counting the number of hexagonal grid 
cells that contain occurrence records for the baboon will differ 
a lot depending on the size of the grid. When grid cells are only 
50 km across, most cells will contain zero occurrences while a 
few cells might have one or two records. However, when grid 
cells are 250 km across, a single cell can easily encompass 
multiple records. Summing the area of the grid cells containing 
occurrence records quantifies the geographic range as the ‘Area 
of Occupancy’.

For the baboon, we can see that the estimates of its geographic 
range size as the Area of Occupancy varies considerably for each 
combination of range map and scale of assessment. Range size 
estimates based on point records in 50 km grid cells are 20 times 
smaller than ranges estimated from the Extent of Occurrence in a 
250 km grid. Yet both approaches can be justified under the right 
circumstances.

Ultimately, the onus in on users to understand and interpret 
whether the source of distribution data and the scale of 
assessment are appropriate for their specific purposes. This holds 
true for single protected areas, countries, regions, and the whole 
continent of Africa.

Mapping species’ distribution ranges for the whole of Africa is not a simple task. Results 
vary significantly depending on how, and at which spatial scale, species’ ranges are defined. 
Biodiversity maps are simplified depictions of complex realities, shaped by scientific views. 
To best interpret them, it is key for the users to understand the trade-offs between different 
mapping technics depending on e.g. symbolism. It is as important for the scientists to report 
mapping choices and the limits of their data in order to best support decision making.
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Chacma baboon. 
The Chacma baboon is very adaptable to life 
in many different habitats, from the deserts of 
Namibia, to the mountains of Lesotho. This makes it 
challenging to map its distribution range accurately.
Source: Bernard DUPONT on Wikimedia Commons CC BY-SA 2.0.

The Area of Occupancy at three different spatial scales. 
The geographic range for the baboon (Papio ursinus) expressed 
as the Area of Occupancy, by counting grid cells (50 km, 100 km, 
250 km across) that contain occurrence records. 
Source: GBIF.org (2023), Global Biodiversity Information Facility (GBIF) Homepage. 
Available from: https://www.gbif.org [17 November 2023].

Different, yet equally valid, estimates of the baboon's Area 
of Occupancy. 
The geographic range for the Chacma baboon (Papio ursinus) 
expressed as the Area of Occupancy, for each combination of 
distribution type (Extent of Occurrence, species distribution 
model, and occurrence records) and scale of assessment (a grid 
with cells measuring 50 km, 100 km, 250 km across).
Source: Own calculations.

Three technically valid depictions of the baboon's 
geographical distribution. 
The geographic range for the baboon (Papio ursinus) displayed 
as its Extent of Occurrence (from the IUCN Red List), a species 
distribution model (climate-based suitability modelled using 
Maxent), and occurrence records (based on points from the 
Global Biodiversity Information Facility, GBIF). 
Sources: 
Map 1: Sithaldeen, R. (2019) Papio ursinus (errata version published in 2020). The IUCN 
Red List of Threatened Species 2019: e.T16022A168568698. https://dx.doi.org/10.2305/
IUCN.UK.2019-3.RLTS.T16022A168568698.en
Map 2: Own modelling.
Map 3: GBIF.org (2023) Global Biodiversity Information Facility (GBIF) Homepage. Available 
from: https://www.gbif.org [17 November 2023].
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1.3.3 Geographic biases in biodiversity data

Although scientists currently know more about the distributions 
of plants and animals than at any other point in human history, 
large parts of Africa are essentially still unexplored. Reasons 
for this vary. Some countries have too few ecologists to cover 
large territories. In other countries, untraversable terrain, conflict 
zones, or poor road access prevent researchers from conducting 
biodiversity surveys. The outcome of these geographical biases 
is that it is sometimes hard to know whether an area has few 
species living there, or whether it is simply understudied.

This feature map shows all the occurrence records in the Global 
Biodiversity Information Facility’s (GBIF) database1. Only a few 
countries – notably Benin, South Africa, and Kenya – are relative 
well covered by survey records. Most of the Sahel, Democratic 
Republic of the Congo, and Angola are data poor, despite these 
regions having some of the most unique biodiversity on the 
planet. Africa’s biodiversity hotspots are amongst the most 
poorly studied worldwide, with only a tiny fraction of their total 
biodiversity represented in global databases2.

Benin is unique in that its whole territory is covered by 
systematic surveys, such as the Census of National Forest of 
Benin3. But within most other countries, data are not spread evenly. 
In countries like Namibia, Botswana, and Ethiopia, occurrence 
records are clearly concentrated around urban centres, protected 
areas, and road networks. In such instances, the availability of 
data says more about the accessibility to researchers than the 
distributions of species.

There are also geographical data biases within individual 
protected areas. This inset map shows how occurrence records 
in a small part of Kruger National Park, South Africa, are 
concentrated around campsites, roads, and lookout points. Like 
in many protected areas on the continent, researchers and 
tourists to Kruger National Park may not leave their vehicles 
unless accompanied by armed rangers. This means that most 
sightings only occur in very specific areas; not because species 
prefer these areas, but because they are more accessible to 
scientists. In many protected areas, wildlife census counts are 
carried out from vehicles or fixed survey points and researchers 
must use sophisticated statistical techniques (e.g. distance-based 
sampling) to extrapolate their counts to areas not covered by 
their surveys.

Geographically representative data is essential for effective 
conservation and is prioritised by the Kunming-Montreal Global 
Biodiversity Framework (see Box). However, recent estimates 
suggest that at current rates of progress, it might take another 
two centuries before scientists have covered the whole continent 
at least once4. Unfortunately, just one visit might not be enough 
because it is unlikely that all species will be recorded during 
a single survey. Latest estimates suggest that more than 10 
surveys will be needed to record half of all know species in an 
area4.

Complete geographically representative biodiversity data will 
not be available for the foreseeable future. Therefore, the onus 
is on scientists, managers, and policymakers to acknowledge and 
accommodate imperfect information on species’ distributions. In 
practice, this means confirming whether a high density of data 
in an area is due to there being high biodiversity there or merely 
because the area is easily accessible to researchers. It also 
means that the absence of data should be treated cautiously 
because, more often than not, it tells us more about important 
gaps in our knowledge than it does about the unsuitability of an 
area to plants and animals.

Scientists currently know more about the distributions of plants and 
animals than ever before, but information still tends to come from only a 
small subset of the whole planet. Data are predominantly from a few well-
studied countries, while large parts of Africa are still unexplored. When 
analysing spatial biodiversity data, it is important to distinguish areas that 
truly have low biodiversity from areas that are simply understudied.

Target 21 of the Global Biodiversity Framework aims to:

“Ensure that the best available data, information and knowledge are 
accessible to decision-makers, practitioners and the public to guide 
effective and equitable governance, integrated and participatory 
management of biodiversity, and to strengthen communication, 
awareness-raising, education, monitoring, research and knowledge 
management…”

The indicator to monitor progress towards this targets is still under 
development, but it is proposed to be a composite indicator that includes 
the geographic coverage of accessible biodiversity data for all species5. 
In simple terms, success requires that geographically representative data 
is available across whole species’ ranges.

How the Kunming-Montreal Global Biodiversity 
Framework considers data biases.
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Letaba Rest Camp, Kruger National Park, South Africa. 
The Letaba Rest Camp in Kruger National Park has a 
viewing deck overlooking the Letaba River. Tourists can 
sip sundowners while watching animals on the wide-
open sandbank. The ease of viewing means that there is 
a disproportionately high number of occurrence records 
at the campsite.
Source: Falko Buschke, with permission, all rights reserved.

Letaba Rest Camp, Kruger National Park, South Africa. 
The density of occurrence records from the Global Biodiversity 
Information Facility (GBIF) around Letaba Rest Camp in Kruger 
National Park, South Africa.
Source: GBIF.org (2023) Global Biodiversity Information Facility (GBIF) Homepage. Available 
from: https://www.gbif.org [05 December 2023].

Spotting species along the road network. 
This lioness preferred resting on the warm road, rather than the 
dew-covered vegetation. Occurrence records are often concentrated 
along roadways because researchers and tourists are often not 
allowed to leave their vehicles and animals are much more visible 
on open routes compared to the dense roadside vegetation.
Source: Falko Buschke, with permission, all rights reserved.

Sightings at dedicated viewpoints. 
This herd of elephants could be spotted easily from the bridge 
over the Letaba River, Kruger National Park, South Africa. 
Dedicated lookout points – like bridges, bird hides, or piers – 
tend to have a high concentration of occurrence records.
Source: Falko Buschke, with permission, all rights reserved.

The density of occurrence records in the Global Biodiversity 
Information Facility (GBIF).
Source: GBIF.org (2023), Global Biodiversity Information Facility (GBIF) Homepage. 
Available from: https://www.gbif.org [05 December 2023].
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1.3.4 Taxonomic bias issues

Biodiversity refers to the diversity of life on Earth at multiple 
levels, including genetic, species, and ecosystem diversity, as 
well as the ecological functions, interactions, and evolutionary 
processes that sustain them. But most of scientific evidence is 
from just a few well-studied taxonomic groups, with thousands of 
species yet to be discovered. For decades, charismatic vertebrate 
species received much more research focus than invertebrates 
and plants, even though the latter groups make up a much larger 
proportion of known biodiversity.

The map on the left shows the densities of nearly 650 000 
known records from 1 346 beetle species in Africa represented in 
the Global Biodiversity Information Facility1. By contrast, the map 
on the right shown the densities of more than 48 million known 
records from 1 439 bird species from the same database. Even 
though there are an estimated 90 – 180 beetle species for every 
one bird species globally2, there are 70 times fewer data records 
for this group of organisms. 

This type of taxonomic bias is not unique to the Global 
Biodiversity Information Facility. For instance, the International 
Union for Conservation of Nature’s (IUCN) Red List shows similar 
biases. Currently, the extinction threats of roughly the same 
amount of plant (~63 000) and vertebrate (~60 000) species 
have already assessed by the IUCN. However, there are about six 
plant species for every one vertebrate species, which equates to 
only 15 % of all known plants with extinction threat assessments 
compared to 81 % of vertebrates. The numbers look even worse 
for invertebrates (2 %) and fungi & protists (0.5 %), which are 
practically invisible in global threat assessments.

Taxonomic biases can have major implications for policy. The 
use of wild plants and fungi for food, fibre, fuel, and medicine 
has shaped African societies over centuries. Similarly, some 
invertebrates have supported agriculture though pollination 
and pest control, while others have destroyed crops (e.g. locust 
swarms) and spread diseases (e.g. malaria vectors). Despite the 
social and cultural significance of these organisms, they tend to 
be overlooked in global biodiversity databases.

In practice, scientific knowledge covers only a small fraction of all 
species. Most biodiversity is still unknown. As a result, interpretations 
of maps that depict biodiversity need to take into account the 
limitations of the underlying data. In most cases, these maps might 

accurately show the distributions of birds and mammals, but 
they fall short of representing the grasses, trees, shrubs, 

mushrooms, insects, spiders, and snails that make up 
most of life on earth.

Biodiversity research has historically focused more on certain 
taxonomic groups, particularly on large charismatic vertebrates, 
and less on plants and invertebrates, resulting in uneven data 
availability across the tree of life. This disparity influence 
the way biodiversity is represented (or is partly missing for 
less-studied taxa) in maps and models. When interpreting 
geographic patterns of biodiversity, it is essential to check 
wether they fully or only partially represent all life on earth.
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The common ostrich, an endemic African bird. 
Birds, like this ostrich (Struthio camelus), are well represented in 
global biodiversity databases despite only making up a relatively 
small proportion of all known species.
Source: Axel Tschentscher on Wikimedia Commons CC BY-SA 4.0 DEED.

Taxonomic variation in the species evaluated by the IUCN Red List. 
Each square represents 10 000 species. Red squares have had their 
extinction threat assessed by the IUCN, while grey squares have yet to 
be evaluated. Despite having the fewest species overall, vertebrates 
make up the bulk of species assessed by the IUCN Red List.
Source: Own calculations based on data from IUCN Red List version 2022-2 Summary Statistics 
(https://www.iucnredlist.org/resources/summary-statistics).

African dung beetles, one of more than a 
million known beetle species on the planet. 
Dung beetles (Scarabaeus spp.) perform the 
essential role of processing animal waste 
and ensuring nutrient cycling and ecosystem 
functioning. Despite this thankless task, these 
beetles and others like them are mostly 
underrepresented in global biodiversity databases.
Source: Jochen Smolka on flickr CC BY-NC-SA 2.0.

The density of records for beetles in the  
Global Biodiversity Information Facility (GBIF). 
Source: GBIF.org (2024), Global Biodiversity Information Facility (GBIF) 
Homepage. Available from: https://www.gbif.org [18 January 2024].
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Measuring biodiversity for the whole continent is challenging, 
so scientists often use sophisticated models to predict biodiversity. 
These models rely on algorithms that process incomplete information 
from field surveys or satellite sensors, resulting in consistent and 
comparable predictions across large areas. However, improving and 
updating these algorithms can change their predictions dramatically, 
even when the actual biodiversity features stay the same. It is 
important to understand when the dynamics of a dataset are 
caused by real changes to biodiversity, and when they are simply the 
outcome of changes to the underlying model.

The Biodiversity Intactness Index is a perfect example of how 
biodiversity predictions can change due to improvements to the 
modelling approach. The Biodiversity Intactness Index is a measure 
of an area’s species richness or average population abundance, 
presented as the proportion of what would be expected in an 
equivalent intact ecosystem1. So, an Index value of 0.5 means that 
the current biodiversity is half of what it was before any human 
interference. This is useful because it means that biodiversity can 
theoretically be compared across vastly different ecosystem types.

Even though the idea of the Biodiversity Intactness Index dates 
back to 2005, models for the whole globe only appeared a decade 
later2,3. These global estimates were based on a generalised linear 
mixed effect regression model, a statistical technique that finds 
patterns in comparable biodiversity surveys across multiple sites 
that differ in the nature or intensity of human impacts4. It then uses 
these patterns to predict biodiversity in unsurveyed sites based on 
land-cover. As with all statistical techniques, the predictions are only 
as good as the quality of the data used to train the model.

Scientists soon noticed how certain patterns in the global 
Biodiversity Intactness Index did not align with what they knew 
from other studies5. These errors were attributed to a combination 
of incomplete survey data and coarse land-cover data6, which were 
improved in subsequent years. Upgrades to the quality of land-
cover were especially useful for distinguishing between artificial 
pasturelands and natural rangelands6, and for comparing plantations 
with lightly and intensely managed secondary forests7. The updated 
version of the Biodiversity Intactness Index provides a more reliable 
prediction of the state of biodiversity worldwide.

The key lesson from the Biodiversity Intactness Index is how 
important it is to understand what is being presented by any dataset. 
It would be tempting – not to mention technically straightforward 
– to compare the Biodiversity Intactness Index between 2015 and 
2019 and draw conclusions about biodiversity dynamics during that 
period. But this would be a major mistake. Therefore, scientists have a 
duty to guide policy officials to understand when data represent real 
changes in biodiversity and when they only represent improvements 
in data collection, monitoring, and modelling.

1.3.5 Methodological updates to underlying data

2015 2019

1

2 3

Sometimes we observe significant changes in biodiversity 
through time, but we should be careful of reading too much 
into these changes. The technical difficulty of measuring 
biodiversity for the whole continent means that scientists 
rely on predictive models. When these models are improved 
and updated, their predictions can change dramatically even 
when the underlying biodiversity features stay the same.
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Edges of the Sahara desert. 
The updated Biodiversity Intactness Index now shows a clearer picture of 
areas of known ecological degradation, like the Sahel in Mali. The early 
model overestimated intactness in rangelands with intermediate human 
population pressure, but this has been fixed in the updated version.
Source: TREEAID on flickr CC BY 2.0.

Springbok, Namib Desert, Namibia. 
The original model of the Biodiversity Intactness Index underestimated biodiversity in arid 
rangelands with low human population densities, like the Namib Desert in Namibia. But 
such areas might have naturally low biodiversity due to their hot and dry climates, not 
because of human-driven biodiversity loss.
Source: Grégoire Dubois, with permission, all rights reserved.

Deforestation in Cameroon. 
The original model for the Biodiversity Intactness Index predicted, 
perhaps counterintuitively, that biodiversity is higher in primary forests 
with more intense human use. The updated model does a better job of 
presenting biodiversity loss in heavily used forests, like these cleared 
forests in Cameroon.
Source: Baudouin Desclee, with permission, all rights reserved.

Source: Newbold, T. et al. (2015) Global 
effects of land use on local terrestrial 
biodiversity. Nature 520, 45 – 50.

Source: Sanchez Ortiz, K., et al. (2019) Global maps 
of Biodiversity Intactness Index [Data set]. Natural 
History Museum. https://doi.org/10.5519/0000082


